Add like
Add dislike
Add to saved papers

Controlled "golf ball shape" structuring of Mg surface under acoustic cavitation.

This manuscript describes the original structuring of Mg materials under ultrasound irradiation in mild conditions. Golf ball like extended structures can be prepared in dilute oxalic solutions at 20°C under high frequency ultrasound (200kHz). An original approach carried out through iterative 3D reconstruction of sonicated surfaces is used to describe surface evolutions and characterize the formed microstructures. A combination of SEM, ICP-AES, contact-angle measurements, and 3D image analyses allows to characterize the roughness and mass loss evolutions, and investigate the mechanism of formation for such architectures. A screening of the sonication experiments clearly points out an ultrasound frequency dependency for the effects generated at the surface. 200kHz sonication in 0.01M oxalic acid provides an unprecedented manufacturing of Mg samples which result from a controlled and localized dissolution of the material and characterized by a strong wetting surface with a roughness of 170nm. The additional formation of newly formed secondary phases appearing with surface dissolution progress is also deciphered. More generally, the ultrasonic procedure used to prepare these engineered surfaces opens new alternatives for the nano- and micro-structuring of metallic materials which may exhibit advanced physical and chemical properties of potential interest for a large community.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app