Add like
Add dislike
Add to saved papers

A simple way to achieve bioinspired hybrid wettability surface with micro/nanopatterns for efficient fog collection.

Nanoscale 2017 October 6
Fog collection is receiving increasing attention for providing water in semi-arid deserts and inland areas. Inspired by the fog harvesting ability of the hydrophobic-hydrophilic surface of Namib desert beetles, we present a simple, low-cost method to prepare a hybrid superhydrophobic-hydrophilic surface. The surface contains micro/nanopatterns, and is prepared by incorporating femtosecond-laser fabricated polytetrafluoroethylene nanoparticles deposited on superhydrophobic copper mesh with a pristine hydrophilic copper sheet. The as-prepared surface exhibits enhanced fog collection efficiency compared with uniform (super)hydrophobic or (super)hydrophilic surfaces. This enhancement can be tuned by controlling the mesh number, inclination angle, and fabrication structure. Moreover, the surface shows excellent anti-corrosion ability after immersing in 1 M HCl, 1 M NaOH, and 10 wt% NaCl solutions for 2 hours. This work may provide insight into fabricating hybrid superhydrophobic-hydrophilic surfaces for efficient atmospheric water collection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app