Add like
Add dislike
Add to saved papers

Exploring differential evolution for inverse QSAR analysis.

Inverse quantitative structure-activity relationship (QSAR) modeling encompasses the generation of compound structures from values of descriptors corresponding to high activity predicted with a given QSAR model. Structure generation proceeds from descriptor coordinates optimized for activity prediction. Herein, we concentrate on the first phase of the inverse QSAR process and introduce a new methodology for coordinate optimization, termed differential evolution (DE), that originated from computer science and engineering. Using simulation and compound activity data, we demonstrate that DE in combination with support vector regression (SVR) yields effective and robust predictions of optimized coordinates satisfying model constraints and requirements. For different compound activity classes, optimized coordinates are obtained that exclusively map to regions of high activity in feature space, represent novel positions for structure generation, and are chemically meaningful.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app