Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Molecular Nuances Governing the Self-Assembly of 1,3:2,4-Dibenzylidene-d-sorbitol.

1,3:2,4-Dibenzylidene-d-sorbitol (DBS) is the gold-standard for low-molecular-weight organogelators (LMOGs). DBS gels a wide array of solvents, as illustrated by the large Hansen sphere representing gels (2δd = 33.5 MPa1/2 , δp = 7.5 MPa1/2 , and δh = 8.7 MPa1/2 ; radius = 11.2 MPa1/2 ). Derivatives of DBS have been synthesized to isolate and determine molecular features essential for organogelation. In this work, π-π stacking and hydrogen bonding are the major noncovalent interactions examined. The importance of π-π stacking was studied using 1,3:2,4 dicyclohexanecarboxylidene-d-sorbitol (DCHS), which eliminates possible π-π stacking while still conserving the other structural aspects of DBS. The replacement of the benzyl groups with cyclohexyl groups led to a very a poor gelator; only one of the several solvents examined, carbon tetrachloride, formed a gel. 1,3:2,4-Diethylidene-d-sorbitol (DES), another DBS analogue incapable of π-π stacking but with very different polarity, gelated a large Hansen space (2δd = 34.0 MPa1/2 , δp = 10.9 MPa1/2 , and δh = 10.8 MPa1/2 ; radius = 9.2 MPa1/2 ). DES gels solvents with higher δp and δh values than DBS. To assess the role of hydrogen bonding, DBS was acetalated (A-DBS), and it was found that the Hansen space gelated by A-DBS shifted to less polar solvents with higher hydrogen-bonding Hansen solubility parameters (HSPs) (2δd = 33.8 MPa1/2 , δp = 6.3 MPa1/2 , and δh = 9.6 MPa1/2 ; radius = 11.1 MPa1/2 ) than for DBS. These systematic structural modifications are the first step in exploring how specific intermolecular features alter aspects of Hansen space corresponding to positive gelation outcomes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app