Add like
Add dislike
Add to saved papers

Film Confinement Induced "Jump-Percolation" Wetting Transition in Amphiphilic Block Copolymer Films.

We report a first-order like sharp surface wettability transition with varying film thickness dependent morphology in cast films of an amphiphilic triblock copolymer. Films composed of poly(2-(N-ethylperfluorooctanesulfonamido) ethyl methyl acrylate), poly(FOSM), and poly(N,N'-dimethyl acrylamide), poly(DMA), with thickness (h) in the transition-range, 200 < h < 300 nm, exhibited an abrupt hydrophobic to hydrophilic dynamic water contact angle transition. After an induction time, ti ≈ 40 to 180 s, water contact angle varied as θc ≈ 116° to 40° with an ultrafast contact angle decay time constant, [Formula: see text] ≈ -18°/s. This behavior is a result of competing heterogeneous and antagonistic effects of bumpy poly(DMA) wetting domains against a nonwetting planar poly(FOSM) background, with a "jump percolation" wetting transition when the poly(DMA) domain density reaches unity. Outside of this film thickness range, relatively shallow decreasing water contact angle gradients were observed with a monotonically increasing poly(DMA) domain area coverage with increasing film thickness in the overall range of 40 nm (hydrophobic, θc ≈ 118°) < h < 500 nm (hydrophilic, θc ≈ 8°). The optical diffuse reflectance properties of these rough surfaces exhibit an onset of diffuse reflectance maxima correlated to the transition morphology film thickness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app