Add like
Add dislike
Add to saved papers

MiR-30a-5p ameliorates spinal cord injury-induced inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling.

Spinal cord injury (SCI) is a major disability requiring more effective treatment than is currently available. MicroRNAs have been shown to effectively regulate gene expression at the translational level. The aim of the present study was to explore the potential role of miR-30-5p and possible mechanism in SCI. We found that miR-30-5p was notably down-regulated, while Neurod 1 expression was highly elevated in microglia from the mouse model of SCI. Additionally, overexpression of miR-30a-5p significantly suppressed inflammatory responses as reflected by a decrease in the secretion of the cytokines TNF-α, IL-1β and IL-10 triggered by SCI. Furthermore, introduction of miR-30a-5p strengthened the scavenging of oxygen free radicals accompanied by an increase in the expression of SEPN1, TXNL1 and GPX1. More importantly, our study explored that Neurod 1 was a direct and functional target of miR-30a-5p, which was validated by the dual luciferase reporter assay. qRT-PCR and western blot analysis further validated that miR-30a-5p negatively regulated the expression of Neurod 1. Mechanistically, overexpression of miR-30a-5p or silencing of the Neurod 1 gene prevented the MAPK/ERK signalling and inhibited inflammatory responses, meanwhile activated SEPN1, TXNL1 and GPX1. These findings indicate that miR-30a-5p ameliorates inflammatory responses and oxidative stress by targeting Neurod 1 through MAPK/ERK signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app