Add like
Add dislike
Add to saved papers

Dynamics of coherence, localization and excitation transfer in disordered nanorings.

Self-assembled supramolecular aggregates are excellent candidates for the design of efficient excitation transport devices. Both artificially prepared and natural photosynthetic aggregates in plants and bacteria present an important degree of disorder that is supposed to hinder excitation transport. Besides, molecular excitations couple to nuclear motion affecting excitation transport in a variety of ways. We present an exhaustive study of exciton dynamics in disordered nanorings with long-range interactions under the influence of a phonon bath taking the LH2 system of purple bacteria as a model. Nuclear motion is explicitly taken into account by employing the Davydov ansatz description of the polaron and quantum dynamics are obtained using a time-dependent variational method. We reveal an optimal exciton-phonon coupling that suppresses disorder-induced localization and facilitate excitation de-trapping. This excitation transfer enhancement, mediated by environmental phonons, is attributed to energy relaxation toward extended, low-energy excitons provided by the precise LH2 geometry with anti-parallel dipoles and long-range interactions. An analysis of localization and spectral statistics is followed by dynamic measures of coherence and localization, transfer efficiency and superradiance. Linear absorption, 2D photon-echo spectra and diffusion measures of the exciton are examined to monitor the diffusive behavior as a function of the strengths of disorder and exciton-phonon coupling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app