Add like
Add dislike
Add to saved papers

Islands, mainland, and terrestrial fragments: How isolation shapes plant diversity.

Ecology and Evolution 2017 September
The fragmentation of natural habitats is a major threat for biodiversity. However, the impact and spatial scale of natural isolation mechanisms leading to species loss, compared to anthropogenic fragmentation, are not clear, mainly due to differences between fragments and islands, such as matrix permeability. We studied a 500 km2 Mediterranean region in France, including urban habitat fragments, continuous habitat, and continental-shelf islands. On the basis of 295 floristic relevés, we built species-area relationships to compare isolation in fragments after urbanization, with continuous habitat and continental-shelf islands. We assumed either no dispersal, infinite dispersal, or estimated intermediate levels of habitat reachability through graph theory. Isolation mechanisms occurred in fragments but with a lower strength than in near-shore islands, and most importantly affected perennial plants. Annual plants were less affected, probably due to their smaller size and shorter life cycle. Isolation occurred at landscape level in fragments and at patch level in islands. The amount of reachable habitat (accounting for spatial configuration) explained local species richness in both systems, but the amount of habitat (no consideration of spatial configuration) was already a good predictor. These results suggest an important role of habitat amount around fragments in mitigating the isolation effects observed in near-shore islands, and the importance of carefully considering different functional groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app