Add like
Add dislike
Add to saved papers

Characterizing the Impacts of Deposition Techniques on the Performance of MnO 2 Cathodes for Sodium Electrosorption in Hybrid Capacitive Deionization.

Capacitive deionization (CDI) is currently limited by poor ion-selectivity and low salt adsorption capacity of porous carbon electrodes. To enhance selectivity and capacity via sodium insertion reactions, carbon aerogel electrodes were modified by depositing amorphous manganese dioxide layers via cyclic voltammetry (CV) and electroless deposition (ED). MnO2 -coated electrodes were evaluated in a hybrid capacitive deionization system to understand the relationship between oxide coating morphology, electrode capacitance, and sodium removal efficacy. Both deposition techniques increased electrode capacitance, but only ED electrodes improved desalination performance over bare aerogels. SEM imaging revealed ED deposition distributed MnO2 throughout the aerogel, while CV deposition created a discrete crust, indicating that CV electrodes were limited by diffusion. Sodium adsorption capacity of ED electrodes increased with MnO2 mass deposition, reaching a maximum of 0.77 mmol-Na+ per gram of cathode (2.29 mmol-Na+ g-MnO2 -1 ), and peak charge efficiency of 0.95. The presence of MnO2 also positively shifted the electrode potential window of sodium removal, reducing parasitic oxygen reduction and inverting the desalination cycle so that energy discharge coincides with salt removal (1.96 kg-NaCl kWh-1 ). These results highlight the importance of deposition technique in improving desalination with MnO2 -coated electrodes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app