Add like
Add dislike
Add to saved papers

Injectable and Self-Healing Thermosensitive Magnetic Hydrogel for Asynchronous Control Release of Doxorubicin and Docetaxel to Treat Triple-Negative Breast Cancer.

Integration of two or more drugs into a multiagent delivery system has been considered to have profound impact on both in vitro and in vivo cancer treatment due to their efficient synergistic effect. This study presents a cheap and simple chitosan hydrogel cross-linked with telechelic difunctional poly(ethylene glycol) (DF-PEG-DF) for synthesis of an injectable and self-healing thermosensitive dual-drug-loaded magnetic hydrogel (DDMH), which contains both doxorubicin (DOX) and docetaxel (DTX) for chemotherapy and iron oxide for magnetic hyperthermia induced stimuli responsive drug release. The as-prepared DDMH not only have good biocompatibility but also exhibit unique self-healing, injectable, asynchronous control release properties. Meanwhile, it shows an excellent magnetic field responsive heat-inducing property, which means that DDMH will produce a large amount of heat to control the surrounding temperature under the alternative magnetic field (AMF). A remarkably improved synergistic effect to triple negative breast cancer cell line is obtained by comparing the therapeutic effect of codelivery of DOX and DTX/PLGA nanoparticles (DTX/PLGA NPs) with DOX or DTX/PLGA NPs alone. In vivo results showed that DDMH exhibited significant higher antitumor efficacy of reducing tumor size compared to single drug-loaded hydrogel. Meanwhile, the AMF-trigger control release of drugs in codelivery system has a more efficient antitumor effect of cancer chemotherapy, indicating that DDMH was a promising multiagent codelivery system for synergistic chemotherapy in the cancer treatment field.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app