Add like
Add dislike
Add to saved papers

The Influence of the Position of the Double Bond and Ring Size on the Stability of Hydrogen Bonded Complexes.

Scientific Reports 2017 September 13
To study the influence of the position of the double bond and ring size on the stability of hydrogen bonded complexes, the 1:1 complexes formed between 2,2,2-trifluoroethanol (TFE) and three heterocyclic compounds including 2,3-dihydrofuran (2,3-DHF), 2,5-dihydrofuran (2,5-DHF) and 3,4-dihydropyran (3,4-DHP) were investigated systematically. The formation of hydrogen bonded TFE-2,3-DHF, TFE-2,5-DHF and TFE-3,4-DHP complexes were identified by gas phase FTIR spectroscopy at room temperature, and the OH-stretching fundamental transition of TFE was red shifted upon complexation. The competition between the O atom and π-electrons bonding sites within the complexes was studied, and the O-H···π type hydrogen bond was found to be less stable than the O-H···O in all three cases. The observed red shifts of the OH-stretching fundamental transitions in the complexes were attributed to the formation of O-H···O hydrogen bond. Equilibrium constants of the complexation reactions were determined from measured and calculated OH-stretching fundamental intensities. Both theoretical calculations and experimental results reveal that the hydrogen bond strengths in the complexes follow the sequence: TFE-2,5-DHF > TFE-2,3-DHF ≈ TFE-3,4-DHP, thus the position of the double bond exerts significantly larger influence than ring size on the stability of the selected hydrogen bonded complexes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app