Add like
Add dislike
Add to saved papers

Identification of key metabolic changes during liver fibrosis progression in rats using a urine and serum metabolomics approach.

Scientific Reports 2017 September 13
Reversibility of hepatic fibrosis is an intrinsic response to chronic injury, and with on-going damage, fibrosis can progress to its end-stage consequence, cirrhosis. Non-invasive and reliable biomarkers for early detection of liver fibrosis are needed. Based on the CCl4-induced liver fibrosis rat model, urinary and serum metabolic profiling performed by LC-QTOF-MS associated with histological progression were utilized to identify liver fibrosis-specific potential biomarkers for early prediction and to reveal significant fibrotic pathways and their dynamic changes in different stages of liver fibrosis. Finally, nine differential metabolites in urine and ten in serum were selected and identified involving the most relevant metabolic pathways. Perturbations of tryptophan, valine, leucine, isoleucine, and citrate (TCA) cycle metabolites, along with sphingolipid and glycerophospholipid metabolites, occurred from the onset of liver fibrosis. Furthermore, dysregulation of valine and bile acid biosynthesis metabolites occurred in the intermediate and advanced stages. More importantly, among these metabolites, urinary kynurenic acid, 5-hydroxyindoleacetyl glycine, 4-(2-amino-3-hydroxyphenyl)-2,4-dioxobutanoic acid and serum sphinganine, sphingomyelin, L-leucine, L-tryptophan, and LysoPC(17:0) changed at all time points and may serve as potential early biomarkers for the diagnosis of hepatic fibrosis and as therapeutic targets. Overall, this work evaluates the potential of these metabolites for the early detection of liver fibrosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app