Add like
Add dislike
Add to saved papers

Production of eicosapentaenoic acid by high cell density cultivation of the marine oleaginous diatom Fistulifera solaris.

Polyunsaturated fatty acids (PUFAs), including eicosapentaenoic acid (EPA), have attracted attention owing to their health benefits for humans, as well as their importance in aquaculture and animal husbandry. Establishing a sustainable PUFA supply based on fish oils has been difficult due to their increasing demand. Therefore, alternative sources of PUFAs are required. In this research, we examined the potential of the marine oleaginous diatom Fistulifera solaris as an alternative producer of PUFAs. Optimization of culture conditions was carried out for high cell density cultivation, and a maximal biomass productivity of 1.32±0.13g/(L·day) was achieved. By slightly adjusting the culture conditions for EPA production, the maximal EPA productivity reached 135.7±10.0mg/(L·day). To the best of our knowledge, this is the highest EPA productivity among microalgae cultured under photoautotrophic conditions. This result indicates that F. solaris is a promising candidate host for sustainable PUFA production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app