Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Growth arrest-specific protein 7 regulates the murine M1 alveolar macrophage polarization.

Growth arrest-specific gene 7 (Gas7) is preferentially expressed in terminally differentiated brain cells and plays a crucial role during neuronal development and neurite outgrowth. Apart from that, Gas7 was found to be abundantly expressed in immune cells like murine macrophage without knowing the actual roles in immune reaction. By using the Illumina microarray analysis, we observed a clear induction of Gas7 but no other Gas family members in murine M1-polarized alveolar macrophage, which was further confirmed by RT-qPCR, Western blotting, and immunostaining analysis, suggesting a likelihood that Gas7 may participate in murine alveolar macrophage polarization. Moreover, we found that the upregulation of Gas7 in M1-polarized alveolar macrophage was almost fully blocked by IKK selective inhibitor BMS, which links Gas7 induction to nuclear factor kappa beta (NF-κB) signaling activation. Interestingly, we found that Gas7 knockdown by small interfering RNA transfection did not affect the pro-inflammatory cytokine gene Tnf and Ilb expression, whereas the expressions of canonic M1 marker gene Nos2 and other M1-dependent genes Il12b, Il6, Cxcl1, Cxcl2, and Cxcl9 were found to be reduced. Furthermore, Gas7-related M1 gene expression in alveolar macrophage was not dependent on NF-κB and STAT1 pathway. Our results demonstrate that Gas7 is potentially involved in regulation of murine M1 alveolar macrophage polarization.

HIGHLIGHTS: Gas7 was induced in LPS/IFNγ mediated M1 polarization. Gas7 are induced during time course of M1 polarization. Gas7 upregulation was dependent on NF-κB pathway in M1 polarized AMs. Gas7 knockdown reduced the M1 markers gene expression in M1 polarized AMs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app