Add like
Add dislike
Add to saved papers

A novel algorithm for PET and MRI fusion based on digital curvelet transform via extracting lesions on both images.

BACKGROUND AND AIM: Merging multimodal images is a useful tool for accurate and efficient diagnosis and analysis in medical applications. The acquired data are a high-quality fused image that contains more information than an individual image. In this paper, we focus on the fusion of MRI gray scale images and PET color images.

METHODS: For the fusion of MRI gray scale images and PET color images, we used lesion region extracting based on the digital Curvelet transform (DCT) method. As curvelet transform has a better performance in detecting the edges, regions in each image are perfectly segmented. Curvelet decomposes each image into several low- and high-frequency sub-bands. Then, the entropy of each sub-band is calculated. By comparing the entropies and coefficients of the extracted regions, the best coefficients for the fused image are chosen. The fused image is obtained via inverse Curvelet transform. In order to assess the performance, the proposed method was compared with different fusion algorithms, both visually and statistically.

RESULT: The analysis of the results showed that our proposed algorithm has high spectral and spatial resolution. According to the results of the quantitative fusion metrics, this method achieves an entropy value of 6.23, an MI of 1.88, and an SSIM of 0.6779. Comparison of these experiments with experiments of four other common fusion algorithms showed that our method is effective.

CONCLUSION: The fusion of MRI and PET images is used to gather the useful information of both source images into one image, which is called the fused image. This study introduces a new fusion algorithm based on the digital Curvelet transform. Experiments show that our method has a high fusion effect.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app