Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Microtubule Array Patterns Have a Common Underlying Architecture in Hypocotyl Cells.

Plant Physiology 2018 January
Microtubules at the plant cell cortex influence cell shape by patterning the deposition of cell wall materials. The elongated cells of the hypocotyl create a variety of microtubule array patterns with differing degrees of polymer coalignment and orientation to the cell's growth axis. To gain insight into the mechanisms driving array organization, we investigated the underlying microtubule array architecture in light-grown epidermal cells with explicit reference to array pattern. We discovered that all nontransverse patterns share a common underlying array architecture, having a core unimodal peak of coaligned microtubules in a split bipolarized arrangement. The growing microtubule plus ends extend toward the cell's apex and base with a region of antiparallel microtubule overlap at the cell's midzone. This core coalignment continuously shifts between ±30° from the cell's longitudinal growth axis, forming a continuum of longitudinal and oblique arrays. Transverse arrays exhibit the same unimodal core coalignment but form local domains of microtubules polymerizing in the same direction rather than a split bipolarized architecture. Quantitative imaging experiments and analysis of katanin mutants showed that the longitudinal arrays are created from microtubules originating on the outer periclinal cell face, pointing to a cell-directed, rather than self-organizing, mechanism for specifying the major array pattern classes in the hypocotyl cell.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app