Add like
Add dislike
Add to saved papers

Ultrasensitive Detection of Viable Enterobacter sakazakii by a Continual Cascade Nanozyme Biosensor.

Analytical Chemistry 2017 September 21
Recent outbreaks of life-threatening neonatal infections linked to Enterobacter sakazakii (ES) heightened the need to develop rapid and ultrasensitive detection strategies, especially those capable of determining the viable cells. This study introduced a continual cascade nanozyme biosensor for the detection of viable ES based on propidium monoazide (PMA), loop-mediated isothermal amplification (LAMP), and Nanozyme strip. The ompA gene of ES was determined using FITC-modified and BIO-modified primers in the LAMP process. LAMP combined with PMA treatment was applied for distinguishing the viable from the dead state of ES. Then, using Fe3O4 magnetic nanoparticles as a nanozyme probe, a magnetic nanoparticle (MNP)-based immunochromatographic strip (Nanozyme strip) was further employed for amplifying signal to allow visual detection and quantification by a strip reader. The LAMP products were sandwiched between the anti-FITC and the anti-BIO, and the accumulation of the Fe3O4 magnetic nanoparticles enabled the visual detection of ES. The detection limit of the nanozyme biosensor was improved by 10 CFU/mL compared with previously reported techniques, and the whole manipulation process was much faster (within 1 h) and simpler (without specialist facilities). Hence, the developed continual cascade nanozyme biosensor has provided a rapid, ultrasensitive, and simple tool for on-site detection of viable ES.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app