Add like
Add dislike
Add to saved papers

Extracellular SalB contributes to intrinsic cephalosporin resistance and cell envelope integrity in Enterococcus faecalis .

Journal of Bacteriology 2017 September 6
Enterococci are major causes of hospital-acquired infections. Intrinsic resistance to cephalosporins is a universal trait among clinically relevant enterococci. Cephalosporin resistance enables enterococci to proliferate to high densities in the intestines of patients undergoing cephalosporin treatment, a precursor to the emergence of infection. However, the genetic and biochemical mechanisms of intrinsic cephalosporin resistance in enterococci are not well understood. A two-component signal transduction system, CroR/S, is required for cephalosporin resistance in enterococci. Although the CroR/S regulon is not well defined, one gene reported to be CroR-dependent in Enterococcus faecalis JH2-2 encodes an extracellular putative peptidoglycan hydrolase, SalB. To test the hypothesis that SalB is responsible for CroR-dependent cephalosporin resistance, we examined Δ salB mutants in multiple genetic lineages of E. faecalis , revealing that SalB is required not only for intrinsic cephalosporin resistance but also for maintenance of cell envelope integrity in the absence of antibiotic stress. The N-terminal signal sequence is necessary for SalB secretion, and secretion is required for SalB to promote cephalosporin resistance. Functional dissection revealed that the C-terminal SCP domain of SalB is essential for biological activity, and identified three residues within the SCP domain that are required for the stability and function of SalB. Additionally, we found that, in contrast to E. faecalis JH2-2, SalB is not regulated by the CroR/S two-component system in E. faecalis OG1, suggesting diversity in the CroR/S regulon among distinct lineages of E. faecalis Importance Resistance to cephalosporins is universal among clinically relevant enterococci, enabling enterococcal proliferation to high densities in the intestines of patients undergoing cephalosporin treatment, a precursor to the emergence of infection. Disabling cephalosporin resistance could therefore reduce the incidence of enterococcal infections. However, the genetic and biochemical mechanisms of cephalosporin resistance are not well understood. The significance of this work is the identification of a novel extracellular factor (SalB) that promotes cephalosporin resistance in E. faecalis , which could potentially serve as a target for therapeutics that impair enterococcal cephalosporin resistance. Additionally, our work highlights the importance of the C-terminal SCP domain of SalB, including several conserved residues within the SCP domain, for the ability of SalB to promote cephalosporin resistance.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app