Add like
Add dislike
Add to saved papers

Fungal BVMOs as alternatives to cyclohexanone monooxygenase.

FAD-dependent Baeyer-Villiger monooxygenases (BVMOs) have proven to be useful biocatalysts in the selective and specific oxygenation of various ketones. Despite the cloning, heterologous expression and characterization of close to 80 members of this enzyme family, some sub-groups of BVMOs still remain underrepresented and their evolutionary relationship uncertain. Until recently, very few fungal BVMOs have been described. Our previous investigations into BVMOs from the fungus Aspergillus flavus, yielded very little activity on simple cyclic ketones. Here we report on another four BVMOs from A. flavus that are more closely related to cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871. Evolutionary analysis with other characterized BVMOs show their closest relationship to be with either cycloalkanone monooxygenase (CAMO) or 2-oxo-Δ3 -4,5,5-trimethylcyclopentenylacetyl-coenzyme A monooxygenase (OTEMO). The OTEMO-related BVMOAFL706 and BVMOAFL334 were heterologously expressed in E. coli, purified and shown to be able to convert a range of cyclic and substituted cyclic ketones. Of the unsubstituted cyclic ketones, cyclohexanone showed the highest conversion with maximum turnover frequencies reaching 4.3s-1 for BVMOAFL706 . Unlike CHMOacinet , and many of the closely related BVMOs, no substrate inhibition was observed with cyclohexanone to a concentration of up to 30mM, creating the possibility for applications requiring high substrate loading. Aliphatic ketones were also readily converted with excellent regioselectivity. Similar to CHMOacinet , acetophenones were not converted and the oxidation of rac-cis-bicyclo[3.2.0]hept-2-en-6-one occurs enantiodivergently, with the (1R,5S) isomer converted to the "normal" lactone and the (1S,5R) isomer to the "abnormal" lactone.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app