Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Computationally Mapping pK a Shifts Due to the Presence of a Polyelectrolyte Chain around Whey Proteins.

Experimental studies have shown the formation of soluble complexes in the pure repulsive Coulombic regime even when the net charges of the protein and the polyelectrolyte have the same sign ( De Kruif et al. Curr. Opin. Colloid Interface Sci. 2004 , 9 , 340 ; De Vries et al. J. Chem. Phys. 2003 , 118 , 4649 ; Grymonpre et al. Biomacromolecules 2001 , 2 , 422 ; Hattori et al. Langmuir 2000 , 16 , 9738 ). This attractive phenomenon has often been described as "complexation on the wrong side of pI". While one theory assumes the existence of "charged patches" on the protein surface from ion-dipole interactions, thus allowing a polyelectrolyte to bind to an oppositely heterogeneous charged protein region, another theoretical view considers the induced-charge interactions to be the dominant factor in these complexations. This charge regulation mechanism can be described by proton fluctuations resulting from mutual rearrangements of the distributions of the charged groups, due to perturbations of the acid-base equilibrium. Using constant-pH Monte Carlo simulations and several quantitative and visual analysis tools, we investigate the significance of each of these interactions for two whey proteins, α-lactalbumin (α-LA) and lysozyme (LYZ). Through physical chemistry parameters, free energies of interactions, and the mapping of amino acid pKa shifts and polyelectrolyte trajectories, we show the charge regulation mechanism to be the most important contributor in protein-polyelectrolyte complexation regardless of pH, dipole moment, and protein capacitance in a low salt regime.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app