Add like
Add dislike
Add to saved papers

Modification of Poly(propylene fumarate)-Bioglass Composites with Peptide Conjugates to Enhance Bioactivity.

Biomacromolecules 2017 October 10
Poly(propylene fumarate) (PPF) has been highlighted as one of the most promising materials for bone regeneration. Despite the promising advantages of using polymer scaffolds for biomedical applications, their inherent lack of bioactivity has limited their clinical application. In this study, PPF was successfully functionalized with Bioglass and a novel catechol-bearing peptide bioconjugate containing bioactive short peptide sequences of basic fibroblast growth factor, bone morphogenetic protein 2, and osteogenic growth peptide. The binding affinity was assessed to be around 110 nmol/cm2 with the Bioglass content at 10 wt %. Fluorescence imaging studies show that the catechol-bearing modular peptide binds preferentially to the Bioglass. A 4 week in vitro cell study using human mesenchymal stem cells showed that cell adhesion, spreading, proliferation, and osteogenic differentiation at both gene and protein levels were all improved by the introduction of peptides, demonstrating the potential approach of dually functionalized polymers for bone regeneration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app