Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Transcriptomic and physiological analyses of the dinoflagellate Karenia mikimotoi reveal non-alkaline phosphatase-based molecular machinery of ATP utilisation.

The ability to utilize dissolved organic phosphorus (DOP) is important for phytoplankton to survive the scarcity of dissolved inorganic phosphorus (DIP), and alkaline phosphatase (AP) has been the major research focus as a facilitating mechanism. Here, we employed a unique molecular ecological approach and conducted a broader search for underpinning molecular mechanisms of adenosine triphosphate (ATP) utilisation. Cultures of the dinoflagellate Karenia mikimotoi were set up in L1 medium (+P), DIP-depleted L1 medium (-P) and ATP-replacing-DIP medium (ATP). Differential gene expression was profiled for ATP and +P cultures using suppression subtractive hybridisation (SSH) followed by 454 pyrosequencing, and RT-qPCR methods. We found that ATP supported a similar growth rate and cell yield as L1 medium and observed DIP release from ATP into the medium, suggesting that K. mikimotoi cells were expressing extracellular hydrolases to hydrolyse ATP. However, our SSH, qPCR and enzymatic activity assays indicated that 5'-nucleotidase (5NT), rather than AP, was responsible for ATP hydrolysis. Further gene expression analyses uncovered that intercellular purine metabolism was significantly changed following the utilisation of ATP. Our findings reveal a multi-faceted machinery regulating ATP utilisation and P metabolism in K. mikimotoi, and underscore AP activity is not the exclusive indicator of DOP utilisation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app