Add like
Add dislike
Add to saved papers

NQO-Induced DNA-Less Cell Formation Is Associated with Chromatin Protein Degradation and Dependent on A0A1-ATPase in Sulfolobus.

To investigate DNA damage response in the model crenarchaeon Sulfolobus islandicus, four different DNA damage agents were tested for their effects on cell death of this archaeon, including UV irradiation, methyl methanesulfonate, cisplatin, and 4-nitroquinoline 1-oxide (NQO). Cell death featured with DNA-less cell formation was revealed in DNA damage treatment with each agent. Cellular responses upon NQO treatment were characterized in details, and following sequential events were revealed, including: a modest accumulation of G1/S phase cells, membrane depolarization, proteolytic degradation of chromatin proteins, and chromosomal DNA degradation. Further insights into the process were gained from studying drugs that affect the archaeal ATP synthase, including a proton gradient uncoupler and an ATP synthase inhibitor. Whereas the proton uncoupler-mediated excess proton influx yielded cell death as observed for the NQO treatment, inhibition of ATP synthase attenuated NQO-induced membrane depolarization and DNA-less cell formation. In conclusion, the NQO-induced cell death in S. islandicus is characterized by proteolytic degradation of chromatin protein, and chromosomal DNA degradation, which probably represents a common feature for the cell death induced by different DNA damage agents.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app