Add like
Add dislike
Add to saved papers

Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free 64 Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer.

ACS Nano 2017 September 27
Developing tumor-homing nanoparticles with integrated diagnostic and therapeutic functions, and meanwhile could be rapidly excreted from the body, would be of great interest to realize imaging-guided precision treatment of cancer. In this study, an ultrasmall coordination polymer nanodot (CPN) based on the coordination between tungsten ions (WVI ) and gallic acid (W-GA) was developed via a simple method. After polyethylene glycol (PEG) modification, PEGylated W-GA (W-GA-PEG) CPNs with an ultrasmall hydrodynamic diameter of 5 nm were rather stable in various physiological solutions. Without the need of chelator molecules, W-GA-PEG CPNs could be efficiently labeled with radioisotope 64 Cu2+ , enabling positron emission tomography (PET) imaging, which reveals efficient tumor accumulation and rapid renal clearance of W-GA-PEG CPNs upon intravenous injection. Utilizing the radio-sensitizing function of tungsten with strong X-ray absorption, such W-GA-PEG CPNs were able to greatly enhance the efficacy of cancer radiotherapy in inhibiting the tumor growth. With fast clearance and little long-term body retention, those W-GA-PEG CPNs exhibited no appreciable in vivo toxicity. This study presents a type of CPNs with excellent imaging and therapeutic abilities as well as rapid renal clearance behavior, promising for further clinic translation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app