Add like
Add dislike
Add to saved papers

Latching dynamics in neural networks with synaptic depression.

Prediction is the ability of the brain to quickly activate a target concept in response to a related stimulus (prime). Experiments point to the existence of an overlap between the populations of the neurons coding for different stimuli, and other experiments show that prime-target relations arise in the process of long term memory formation. The classical modelling paradigm is that long term memories correspond to stable steady states of a Hopfield network with Hebbian connectivity. Experiments show that short term synaptic depression plays an important role in the processing of memories. This leads naturally to a computational model of priming, called latching dynamics; a stable state (prime) can become unstable and the system may converge to another transiently stable steady state (target). Hopfield network models of latching dynamics have been studied by means of numerical simulation, however the conditions for the existence of this dynamics have not been elucidated. In this work we use a combination of analytic and numerical approaches to confirm that latching dynamics can exist in the context of a symmetric Hebbian learning rule, however lacks robustness and imposes a number of biologically unrealistic restrictions on the model. In particular our work shows that the symmetry of the Hebbian rule is not an obstruction to the existence of latching dynamics, however fine tuning of the parameters of the model is needed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app