Add like
Add dislike
Add to saved papers

In vitro metal catalyzed oxidative stress in DAH7PS: Methionine modification leads to structure destabilization and induce amorphous aggregation.

The first committed step of the shikimate pathway is catalyzed by a metalloenzyme 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase (DAH7PS), which exhibits vulnerability to the oxidative stress. DAH7PS undergoes inactivation in multiple ways in the presence of redox metal, H2 O2 , and superoxide. The molecular mechanism and susceptibility of its inactivation might differ in different organisms and are presently unclear. In the present work, we have cloned, expressed and purified a DAH7PS from Providencia alcalifaciens (PaDAH7PS). The oligomeric state and effect of redox metal treatment on its stability were analyzed through the size exclusion chromatography. The FTIR, MALDI-TOF/TOF-MS studies revealed that methionine residues were modified to methionine sulfoxide in PaDAH7PS. During oxidation, PaDAH7PS is altered into partially folded protein and unfolded states as determined by CD and Fluorescence studies. A significant loss in enzymatic activity of PaDAH7PS was determined and the formation of amorphous aggregates was visualized using AFM imaging and also confirmed by ThT binding based assay. This is the first report where we have shown a hexameric DAH7PS and the methionine residues of PaDAH7PS get oxidize in the presence of oxidative stress. The partially folded and unfolded oligomeric states with high β-content of PaDAH7PS might be the critical precursors for aggregation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app