Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Model-data comparison of high frequency compressional wave attenuation in water-saturated granular medium with bimodal grain size distribution.

Ultrasonics 2018 January
Several acoustic models, such as the poro-elastic model, visco-elastic model, and multiple scattering model, have been used for describing the dispersion relation in a porous granular medium. However, these models are based on continuum or scattering theory, and therefore cannot explain the broadband measurements in cases where scattering and non-scattering losses co-exist. Additionally, since the models assume that the porous granular medium consists of grains of identical size (unimodal size distribution), the models does not account for the behavior of wave dispersion in a medium that has a distribution of differing grain sizes. As an alternative approach, this study proposes a new broadband attenuation model that describes the high frequency dispersion relation for the p-wave in the case of elastic grain scatterers existing in the background fluid medium. The broadband model combines the Biot-Stoll plus grain contact squirt and shear flow (BICSQS) model and the quasicrystalline approximation (QCA) multiple scattering model. Additionally, distribution of grain size effect is examined rudimentarily through consideration of bimodal grain size distribution. Through the quantitative analysis of the broadband model and measured data, it is shown that the model can explain the attenuation dependencies of frequency and grain size distribution for a water-saturated granular medium in the frequency range from 350kHz to 1.1MHz. This study can be applied to the high frequency acoustic SONAR modeling and design in the water-saturated environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app