Journal Article
Review
Add like
Add dislike
Add to saved papers

Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods.

Endocrine-disrupting chemicals (EDCs) are man-made chemicals that interfere with hormonal signalling pathways. They are used in, for example, production of common household materials, in resin-based medical supplies and in pesticides. Thus, they are environmentally ubiquitous and human beings and wildlife are exposed to them on a daily basis. Early-life exposure to EDCs has been associated with later-life adversities such as obesity, diabetes and cancer. Mechanisms underlying such associations are unknown but are likely to be mediated by epigenetic changes induced by EDCs. Epigenetics is the study of changes in gene function that are heritable but do not entail a change in DNA sequence. EDCs have been shown to affect epigenetic marks such as DNA methylation and histone modifications. The scope of this article was to review today's knowledge about mechanisms involved in EDC-induced epigenetic changes and to discuss how this knowledge could be used for designing novel methods addressing epigenetic effects of EDCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app