Add like
Add dislike
Add to saved papers

Roles of actin cytoskeleton for regulation of chloroplast anchoring.

Chloroplasts are known to maintain specific intracellular distribution patterns under specific environmental conditions, enabling the optimal performance of photosynthesis. To this end, chloroplasts are anchored in the cortical cytoplasm. In leaf epidermal cells of aquatic monocot Vallisneria, we recently demonstrated that the anchored chloroplasts are rapidly de-anchored upon irradiation with high-intensity blue light and that the process is probably mediated by the blue-light receptor phototropins. Chloroplast de-anchoring is a necessary step rendering the previously anchored chloroplasts mobile to allow their migration. In this article, based on the results obtained in Vallisneria together with those in other plant species, we briefly discussed possible modes of regulation of chloroplast anchoring and de-anchoring by actin cytoskeleton. The topics include roles of photoreceptor systems, actin-filament-dependent and -independent chloroplast anchoring, and independence of chloroplast de-anchoring from actomyosin and microtubule systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app