Read by QxMD icon Read

Plant Signaling & Behavior

Narender Kumar, John C Larkin
Cell cycle regulation is fundamental to growth and development, and Cyclin-Dependent Kinase Inhibitors (CKIs) are major negative regulators of the cell cycle. Plant genomes encode substantially more CKIs than metazoan or fungal genomes. Plant CKIs fall into two distinct families, KIP-RELATED PROTEINS (KRPs) and SIAMESE-RELATED proteins (SMRs). SMRs can inhibit both S-phase and M-phase CDK complexes in vitro and are transcribed throughout the cell cycle, yet SMRs do not inhibit DNA replication in vivo. This suggests that SMRs must be activated post transcriptionally after the start of S-phase, but the mechanism of this hypothesized activation is unknown...
February 6, 2017: Plant Signaling & Behavior
Guadalupe Sosa-Valencia, Paulette S Romero-Pérez, Miguel Palomar, Alejandra A Covarrubias, José L Reyes
We recently described the activity of miR1514a in response to water deficit in Phaseolus vulgaris. Pvu-miR1514a targets a NAC transcription factor mRNA for cleavage and subsequently triggers NAC-derived phasiRNA formation. Here we show that accumulation and activity of miR1514a are also conserved in the model legume Medicago truncatula. Consistently, we identified Mtr-miR1514a and detected its increased accumulation in response to stress conditions, targeting a NAC TF mRNA for cleavage and triggering phasiRNA production...
February 2, 2017: Plant Signaling & Behavior
Kang Zhang, Wenying Xu, Chunchao Wang, Xin Yi, Zhen Su
Chromatin structure has an important role in modulating gene expression. The incorporation of histone variants into the nucleosome leads to important changes in the chromatin structure. The histone variant H2A.Z is highly conserved between different species of fungi, animals, and plants. However, dynamic changes to H2A.Z in rice have been reported during the day-night cycle. In this study, we generated genome wide maps of H2A.Z for day and night time harvested seedling tissues by combining chromatin immunoprecipitation and high-throughput sequencing...
February 2, 2017: Plant Signaling & Behavior
Amanda Mangeon, Adriana Dias Menezes-Salgueiro, Gilberto Sachetto-Martins
AtGRP3 is a glycine-rich protein from Arabidopsis thaliana shown to interact with the extracellular domain of the receptor-like kinase (RLK) AtWAK1. Based on previous functional data for AtWAK1, a model was proposed that AtGRP3 when bound to this RLK would negatively regulate its kinase activity, inhibiting cell expansion. Here, we review recent functional studies on AtGRP3 that corroborate this model and suggest that AtGRP3/AtWAK1 complex regulates also defense signaling pathways. On the other hand, we show new data on AtGRP3-overexpressing plants indicating that its role in aluminum signaling pathways, as previously observed for elicitor signaling, seems to be more complex than a simple negative regulator...
January 26, 2017: Plant Signaling & Behavior
Birgit Agne, Daniel Köhler, Sacha Baginsky
Tic56 is an essential subunit of a 1-MDa protein complex at the inner chloroplast envelope membrane that comprises Tic100, Tic214 and the protein conducting channel protein Tic20-I. The complex was characterized as the "general protein import translocase" because mutants in either of its subunits have a severe growth phenotype and fail to assemble a photosynthetic machinery. In a recent publication we show that the albino phenotype of tic56-1 mutants results at least in part from a defect in ribosome assembly and a deficiency in plastid translation...
January 26, 2017: Plant Signaling & Behavior
Cam Chau Nguyen, Kentaro Nakaminami, Akihiro Matsui, Shunsuke Watanabe, Yuri Kanno, Mitsunori Seo, Motoaki Seki
Oligouridylate binding protein 1b (UBP1b), a marker protein of plant stress granules (SGs), plays a role in heat stress tolerance in plants. A previous microarray analysis revealed that the expression of several ABA signaling-related genes is higher in UBP1b-overexpressing Arabidopsis plants (UBP1b-ox) subjected to both non-stressed and heat stress conditions. Root elongation and seed germination assays demonstrated that UBP1b-ox exhibited hypersensitivity to ABA. RT-qPCR analysis confirmed that mitogen-activated protein kinase (MAPK) cascade genes, such as MPK3, MKK4, and MKK9 were up-regulated in UBP1b-ox plants...
January 23, 2017: Plant Signaling & Behavior
Matthieu Pierre Platre, Yvon Jaillais
A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics...
January 19, 2017: Plant Signaling & Behavior
Krishna Nath, James P O'Donnell, Yan Lu
A previous study showed that Nitrogen-Fixing-subunit-U-type protein NFU3 may act an iron-sulfur scaffold protein in the assembly and transfer of 4Fe-4S and 3Fe-4S clusters in the chloroplast. Examples of 4Fe-4S and 3Fe-4S-requiring proteins and complexes include Photosystem I (PSI), NAD(P)H dehydrogenase, and ferredoxin-dependent glutamine oxoglutarate aminotransferases. In this paper, the authors provided additional evidence for the role of NFU3 in 4Fe-4S and 3Fe-4S cluster assembly and transfer, as well as its role in overall plant fitness...
January 19, 2017: Plant Signaling & Behavior
Natalie Hoecker, Dario Leister, Anja Schneider
PHOTOSYNTHESIS AFFECTED MUTANT71 (PAM71) is an integral thylakoid membrane protein that functions in manganese uptake into the lumen. Manganese is needed in the thylakoid lumen to build up the inorganic Mn4CaO5 cluster, the catalytic center for water oxidation, and is hence indispensable for oxygen evolution. A recent study revealed that PAM71 is well conserved in plants and shares homology to GCR1 DEPENDENT TRANSLATION FACTOR1 (GDT1) and TRANSMEMBRANE PROTEIN 165 (TMEM165) in Saccharomyces cerevisiae and Homo sapiens, respectively...
January 11, 2017: Plant Signaling & Behavior
Lei Li, A Harvey Millar, Shaobai Huang
Lon is a highly conserved protein family in eukaryotes and eubacteria and its members all contain both a chaperone and a proteolytic domain that are important for Lon function. Loss of mitochondrial Lon1 leads to deleterious phenotypes in yeast and plants, and causes developmental disorders and aging-related diseases in humans. In Arabidopsis, we have recently reported the multiple roles of Lon1 in mitochondrial protein homeostasis through an evaluation of changes in protein degradation rates in the absence of Lon1...
January 3, 2017: Plant Signaling & Behavior
Rongbin Hu, Yinfeng Zhu, Guoxin Shen, Hong Zhang
Protein phosphatase 2A (PP2A) was shown to play important roles in biotic and abiotic stress signaling pathways in plants. PP2A is made of three subunits: a scaffolding subunit A, a regulatory subunit B, and a catalytic subunit C. It is believed that the B subunit recognizes specific substrates and the C subunit directly acts on the selected substrates, whereas the A subunit brings a B subunit and a C subunit together to form a specific PP2A holoenzyme. Because there are multiple isoforms for each PP2A subunit, there could be hundreds of novel PP2A holoenzymes in plants...
January 3, 2017: Plant Signaling & Behavior
Vincent P Klink, Keshav Sharma, Shankar R Pant, Brant McNeece, Prakash Niraula, Gary W Lawrence
The term regulon has been coined in the genetic model plant Arabidopsis thaliana, denoting a structural and physiological defense apparatus defined genetically through the identification of the penetration (pen) mutants. The regulon is composed partially by the soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) syntaxin PEN1. PEN1 has homology to a Saccharomyces cerevisae gene that regulates a Secretion (Sec) protein, Suppressor of Sec 1 (Sso1p). The regulon is also composed of the β-glucosidase (PEN2) and an ATP binding cassette (ABC) transporter (PEN3)...
December 23, 2016: Plant Signaling & Behavior
Thongkhoun Sisaphaithong, Shinichi Hanai, Rie Tomioka, Yoshihiro Kobae, Aiko Tanaka, Katsuya Yano, Chisato Takenaka, Shingo Hata
Seedlings of three rice (Oryza sativa L.) varieties (one indica, ARC5955; and two japonica, Nipponbare and Koshihikari) with or without pre-colonization by the arbuscular mycorrhizal fungus Funneliformis mosseae were transplanted into an upland field and grown to maturity. Pre-colonization had no effect on the yield of Nipponbare or Koshihikari. However, pre-colonized ARC5955 exhibited a strong tendency toward increased yield, which was accompanied by increases in the percentage of ripened grain and the 1000-grain weight...
December 23, 2016: Plant Signaling & Behavior
Henk J Franssen, Olga Kulikova, Viola Willemsen, Renze Heidstra
Nodules are unique organs formed on roots of legumes by soil-borne bacteria, collectively known as rhizobium. Recently, we have shown that orthologs of the AINTEGUMENTA-like (AIL) AP2 transcription factors PLETHORA (PLT) 1 to 4, that redundantly regulate Arabidopsis thaliana root development are involved in root and nodule growth in Medicago truncatula. Hence, it is conceivable that rhizobium has co-opted these genes for nodule development. Whether this co-option requires the presence of specific cis-elements in the promoters and/or specialization of PLT protein function is not clear...
February 2017: Plant Signaling & Behavior
Bernd Striberny, Anthony E Melton, Rainer Schwacke, Kirsten Krause, Karsten Fischer, Leslie R Goertzen, Aaron M Rashotte
Cytokinin Response Factors (CRFs) are AP2/ERF transcription factors involved in cytokinin signal transduction. CRF proteins consist of a N-terminal dimerization domain (CRF domain), an AP2 DNA-binding domain, and a clade-specific C-terminal region of unknown function. Using a series of sequential deletions in yeast-2-hybrid assays, we provide evidence that the C-terminal region of Arabidopsis CRF5 can confer transactivation activity. Although comparative analyses identified evolutionarily conserved protein sequence within the C-terminal region, deletion experiments suggest that this transactivation domain has a partially redundant modular structure required for activation of target gene transcription...
February 2017: Plant Signaling & Behavior
(no author information available yet)
No abstract text is available yet for this article.
2, 2017: Plant Signaling & Behavior
Junjie Tan, Fuqing Wu, Jianmin Wan
Plant flowering at the appropriate time is critical for reproductive success and influenced by a series of environmental factors such as photoperiod and temperature. A number of genes involved in photoperiodic flowering of have been cloned and their roles in modulating expression of the flowering genes have been characterized to a certain extent. However, much less is known about the pathway in transmitting the day length response signal(s) to induce transition to reproductive growth. Recently, we characterized a constitutive flowering repressor OsCOL10 encoding for a member of the CONSTANS-like (COL) family...
January 2, 2017: Plant Signaling & Behavior
Jeanne M Harris, Christine A Ondzighi-Assoume
Roots respond to changes in environmental nitrate with a localized stimulation of ABA levels in the root tip. This rise in ABA levels is due to the action of ER-localized β-GLUCOSIDASE 1, which releases bioactive ABA from the inactive ABA-glucose ester. The slow rise in root tip ABA levels stimulates expression of nitrate metabolic enzymes and simultaneously activates a negative feedback loop involving the protein phosphatase, ABI2, which reduces nitrate influx via the AtNPF6.3 transceptor. The rise in root-tip localized ABA also negatively regulates expression of the SCARECROW transcription factor, thus providing a sensitive mechanism for modulating root growth in response to environmental changes...
January 2, 2017: Plant Signaling & Behavior
Wei Wei Chen, Wei Fan, He Qiang Lou, Jian Li Yang, Shao Jian Zheng
Oxalic acid is the simplest of the dicarboxylic acids. In addition to its role in biological and metabolic processes, oxalate has been implicated in biotic and abiotic stresses. Being a strong chelator of Al, oxalate also has pivotal role in Al resistance mechanisms. However, we demonstrated that cytoplasmic oxalate accumulation is a critical event leading to root growth inhibition under Al stress. Transcriptome analysis from three crop plants identified Acyl Activating Enzyme3 (AAE3) genes to be upregulated by Al stress...
January 2, 2017: Plant Signaling & Behavior
Mai Yamamoto, Taku Takahashi
The excessive xylem phenotype of acaulis5 (acl5), an Arabidopsis mutant defective in the synthesis of thermospermine, indicates that thermospermine is required for negative regulation of xylem differentiation. SAC51 was identified from a dominant suppressor of acl5, sac51-d, and encodes a basic helix-loop-helix (bHLH) protein. sac51-d has a premature termination codon in one of upstream open-reading frames (uORFs) of the SAC51 mRNA that is conserved among the SAC51 family members. Thermospermine may act to bypass the inhibitory effect of the uORF on main ORF translation...
January 2, 2017: Plant Signaling & Behavior
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"