Add like
Add dislike
Add to saved papers

Nanoporous amorphous Ge-Si alloys - unraveling the physics behind ion beam induced morphogenesis.

Despite a high technical relevance and 35 years of observation, self-organized morphogenesis of nanoporous sponge-like amorphous structures during exposure of selected covalent materials to energetic ions is still insufficiently understood. Due to the presence and absence of these effects in amorphous Ge and Si, respectively, the Ge-Si alloy system constitutes an ideal testbed to track down the underlying physics at the atomic scale. This is realized within the present study by a combination of tailored experiments and extensive molecular dynamics computer modeling. The swelling capabilities of a variety of interaction potentials for the Ge-Si system and its elemental constituents are scrutinized with respect to the experimental observations and related to relevant physical properties of the model systems. This allows to identify defect kinetics in combination with a moderate radiation induced fluidity as key ingredients for nanopore morphogenesis. Cast in a simple quantitative model, it enables to account for both experimental as well as computational results, thus paving the way for a design by understanding approach in synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app