Add like
Add dislike
Add to saved papers

Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm of mouse embryos.

Journal of Cell Science 2017 October 16
The small GTPase Arl8b localizes primarily to lysosomes and is involved in lysosomal motility and fusion. Here, we show that Arl8b is required for lysosomal degradation of maternal proteins in the visceral yolk sac endoderm (VYSE), an apical cell layer of the visceral yolk sac, of mouse embryos. The VYSE actively takes up maternal materials from uterine fluid and degrades them in lysosomes to provide breakdown products to the embryo. Arl8b gene-trap mice ( Arl8b-/- ) displayed decreased early embryo body size. The Arl8b-/-  VYSE exhibited defective endocytic trafficking to the lysosome and accumulation of maternal proteins such as albumin and immunoglobulin G in late endocytic organelles. Furthermore, Transthyretin -Cre;Arl8bflox/flox mice in which Arl8b was ablated specifically in the VYSE also showed decreased embryo body size, defects in trafficking to the lysosome and reduction of the free amino acid level in the embryos. Taken together, these results suggest that Arl8b mediates lysosomal degradation of maternal proteins in the VYSE, thereby contributing to mouse embryonic development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app