Add like
Add dislike
Add to saved papers

Surface Chemistry of La 0.99 Sr 0.01 NbO 4-d and Its Implication for Proton Conduction.

Acceptor-doped LaNbO4 is a promising electrolyte material for proton-conducting fuel cell (PCFC) applications. As charge transfer processes govern device performance, the outermost surface of acceptor-doped LaNbO4 will play an important role in determining the overall cell performance. However, the surface composition is poorly characterized, and the understanding of its impact on the proton exchange process is rudimentary. In this work, the surface chemistry of 1 atom % Sr-doped LaNbO4 (La0.99 Sr0.01 NbO4-d , denoted as LSNO) proton conductor is characterized using LEIS and SIMS. The implication of a surface layer on proton transport is studied using the isotopic exchange technique. It has shown that a Sr-enriched but La-deficient surface layer of about 6-7 nm thick forms after annealing the sample under static air at 1000 °C for 10 h. The onset of segregation is found to be between 600 and 800 °C, and an equilibrium surface layer forms after 10 h annealing. A phase separation mechanism, due to the low solubility of Sr in LaNbO4 , has been proposed to explain the observed segregation behavior. The surface layer was concluded to impede the water incorporation process, leading to a reduced isotopic fraction after the D2 16 O wet exchange process, highlighting the impact of surface chemistry on the proton exchange process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app