Add like
Add dislike
Add to saved papers

Magnetically Aligned Co-C/MWCNTs Composite Derived from MWCNT-Interconnected Zeolitic Imidazolate Frameworks for a Lightweight and Highly Efficient Electromagnetic Wave Absorber.

Developing lightweight and highly efficient electromagnetic wave (EMW) absorbing materials is crucial but challenging for anti-electromagnetic irradiation and interference. Herein, we used multiwalled carbon nanotubes (MWCNTs) as templates for growth of Co-based zeolitic imidazolate frameworks (ZIFs) and obtained a Co-C/MWCNTs composite by postpyrolysis. The MWCNTs interconnected the ZIF-derived Co-C porous particles, constructing a conductive network for electron hopping and migration. Moreover, the Co-C/MWCNTs composite was aligned in paraffin matrix under an external magnetic field, which led to a stretch of the MWCNTs along the magnetic field direction. Due to the anisotropic permittivity of MWCNTs, the magnetic alignment considerably increased the dielectric loss of the Co-C/MWCNTs composite. Benefiting from the conductive network, the orientation-enhanced dielectric loss, and the synergistic effect between magnetic and dielectric components, the magnetically aligned Co-C/MWCNTs composite exhibited extremely strong EMW absorption, with a minimum reflection loss (RL) of -48.9 dB at a filler loading as low as 15 wt %. The specific RL value (RL/filler loading) of the composite was superior to that of the previous MOF-derived composite absorbers. It is expected that the proposed strategy can be extended to the fabrication of other lightweight and high-performance EMW-absorbing materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app