Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Chip-scale alignment of long DNA nanofibers on a patterned self-assembled monolayer.

Lab on a Chip 2017 September 27
Controlled alignment of long DNA nanofibers is challenging. This communication reports a method to align human genomic DNA with nearly unlimited length using lithographically produced micro-patterns of self-assembled monolayers (SAMs) with positively charged terminal groups. The micro-patterns act as local DNA reservoirs to supply DNAs for nanofiber formation, and can also stretch and align DNA nanofibers to form an ordered array by controlling the dewetting profile. By reducing the size and inter-patch distance of a micro-patch, a nearly uniform array of long DNA nanofibers can be patterned over a large area. A controlled motion of a DNA containing droplet allows for free patterning of DNA nanofibers and production of complex structures without a transfer process. Bending of DNA nanofibers due to local distortion of the contact line bridges more adjacent micro-patches and increases the chance of producing continuous nanofibers. The interplay between surface tension and electrostatic attraction of positively charged micro-patterns allows the production of long DNA nanofibers in a simple yet powerful way.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app