Journal Article
Research Support, N.I.H., Extramural
Review
Add like
Add dislike
Add to saved papers

Physics-based all-atom modeling of RNA energetics and structure.

The database of RNA sequences is exploding, but knowledge of energetics, structures, and dynamics lags behind. All-atom computational methods, such as molecular dynamics, hold promise for closing this gap. New algorithms and faster computers have accelerated progress in improving the reliability and accuracy of predictions. Currently, the methods can facilitate refinement of experimentally determined nuclear magnetic resonance and x-ray structures, but are 'unreliable' for predictions based only on sequence. Much remains to be discovered, however, about the many molecular interactions driving RNA folding and the best way to approximate them quantitatively. The large number of parameters required means that a wide variety of experimental results will be required to benchmark force fields and different approaches. As computational methods become more reliable and accessible, they will be used by an increasing number of biologists, much as x-ray crystallography has expanded. Thus, many fundamental physical principles underlying the computational methods are described. This review presents a summary of the current state of molecular dynamics as applied to RNA. It is designed to be helpful to students, postdoctoral fellows, and faculty who are considering or starting computational studies of RNA. WIREs RNA 2017, 8:e1422. doi: 10.1002/wrna.1422.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app