Add like
Add dislike
Add to saved papers

Caspase-Independent Pathway is Related to Nilotinib Cytotoxicity in Cultured Cardiomyocytes.

BACKGROUND/AIMS: Cardiotoxicity is a predominant side-effect of nilotinib during chronic myeloid leukemia treatment. The underlying molecular mechanism remains unclear. The role of autophagy and mitochondrial signaling was investigated in nilotinib-treated cardiac H9C2 cells.

METHODS: Cytotoxicity was assessed using Cell Death Detection kit. Immunoblot and immunofluorescence staining was performed, and cathepsin B and caspase3 activity was assessed in nilotinib-treated H9C2 cells with or without distinct pathway inhibitor or specific siRNA.

RESULTS: Nilotinib time- and dose-dependently induced H9C2 apoptosis, which was not completely prevented by the pan caspase inhibitor z-VAD-fmk. Following nilotinib treatment, mitochondrial membrane potential decreased significantly accompanied with remarkable morphological changes. Nuclear translocation of mitochondrial apoptosis inducing factor (AIF) and increased p53 was detected in nilotinib-treated cells. AIF knockdown prevented nilotinib-induced increase of p53 and apoptosis. Additionally, increased cathepsin B activity was detected, and inhibition of cathepsin B by CA-074Me prevented nilotinib-induced apoptosis and nuclear translocation of AIF. Moreover, increased Atg5 and transition of LC3-I to LC3-II was revealed following nilotinib treatment. Increased cathepsin B activity and apoptosis by nilotinib was significantly prohibited by specific autophagy inhibitor bafilomycin A and Atg5 knockdown.

CONCLUSION: Our findings demonstrate that nilotinib increases autophagy and cathepsin B activity, leading to mitochondrial AIF release and nuclear translocation, which is responsible for p53 and apoptosis induction in H9C2 cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app