Add like
Add dislike
Add to saved papers

A Microneedle Functionalized with Polyethyleneimine and Nanotubes for Highly Sensitive, Label-Free Quantification of DNA.

Sensors 2017 August 17
The accurate measure of DNA concentration is necessary for many DNA-based biological applications. However, the current methods are limited in terms of sensitivity, reproducibility, human error, and contamination. Here, we present a microneedle functionalized with polyethyleneimine (PEI) and single-walled carbon nanotubes (SWCNTs) for the highly sensitive quantification of DNA. The microneedle was fabricated using ultraviolet (UV) lithography and anisotropic etching, and then functionalized with PEI and SWCNTs through a dip coating process. The electrical characteristics of the microneedle change with the accumulation of DNA on the surface. Current-voltage measurements in deionized water were conducted to study these changes in the electrical properties of the sensor. The sensitivity test found the signal to be discernable from the noise level down to 100 attomolar (aM), demonstrating higher sensitivity than currently available UV fluorescence and UV absorbance based methods. A microneedle without any surface modification only had a 100 femtomolar (fM) sensitivity. All measurement results were consistent with fluorescence microscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app