Add like
Add dislike
Add to saved papers

An ultrasensitive electrochemical biosensor for the detection of mecA gene in methicillin-resistant Staphylococcus aureus.

Electrochemical DNA biosensor has unique advantages for on-site pathogenic microorganism detection, yet the detection of long DNA towards genome DNA (gDNA) analysis remains challenge. In this work, we report a novel electrochemical biosensor for the ultrasensitive analysis of mecA DNA on methicillin-resistant Staphylococcus aureus (MRSA) genome, using a multi-signal probes (MSP) system. The MSP consists of 7 biotin-labelled signal probes that will combine to the target DNA in a prehybridization step, and then the complex will be captured by a DNA tetrahedron structure probe (TSP) on the electrode surface. Then, after the introduction of the streptavidin-labelled HRP enzyme, a catalysis current signal is detected that is found to be corresponding to the concentration of the target DNA. MSP in this work plays a critical role not only for the signal amplification through bringing 7 biotins, but also dramatically improves the accessibility of the target sequence embedded in the double-strand DNA molecules and complex second structures. The 3-D DNA TSP here provides steady support and optimized surface density for the very "large" complex of MSP system and gDNA, as a base of the capture probe. Finally, as low as 10fM synthetic target DNA was successfully detected, which is at least 3 magnitudes lower than that using single signal probe. Most importantly, we demonstrated the practicability of our analysis method by analyzing a 57fM MRSA gDNA sample showing excellent selectivity, and the reliability of the analysis was also demonstrated by digital PCR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app