Add like
Add dislike
Add to saved papers

Ni-Rich LiNi 0.8 Co 0.1 Mn 0.1 O 2 Oxide Coated by Dual-Conductive Layers as High Performance Cathode Material for Lithium-Ion Batteries.

Ni-rich materials are appealing to replace LiCoO2 as cathodes in Li-ion batteries due to their low cost and high capacity. However, there are also some disadvantages for Ni-rich cathode materials such as poor cycling and rate performance, especially under high voltage. Here, we demonstrate the effect of dual-conductive layers composed of Li3 PO4 and PPy for layered Ni-rich cathode material. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy show that the coating layers are composed of Li3 PO4 and PPy. (NH4 )2 HPO4 transformed to Li3 PO4 after reacting with surface lithium residuals and formed an inhomogeneous coating layer which would remarkably improve the ionic conductivity of the cathode materials and reduce the generation of HF. The PPy layer could form a uniform film which can make up for the Li3 PO4 coating defects and enhance the electronic conductivity. The stretchy PPy capsule shell can reduce the generation of internal cracks by resisting the internal pressure as well. Thus, ionic and electronic conductivity, as well as surface structure stability have been enhanced after the modification. The electrochemistry tests show that the modified cathodes exhibited much improved cycling stability and rate capability. The capacity retention of the modified cathode material is 95.1% at 0.1 C after 50 cycles, whereas the bare sample is only 86%, and performs 159.7 mAh/g at 10 C compared with 125.7 mAh/g for the bare. This effective design strategy can be utilized to enhance the cycle stability and rate performance of other layered cathode materials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app