Add like
Add dislike
Add to saved papers

A time-varying biased random walk approach to human growth.

Scientific Reports 2017 August 11
Growth and development are dominated by gene-environment interactions. Many approaches have been proposed to model growth, but most are either descriptive or describe population level phenomena. We present a random walk-based growth model capable of predicting individual height, in which the growth increments are taken from time varying distributions mimicking the bursting behaviour of observed saltatory growth. We derive analytic equations and also develop a computational model of such growth that takes into account gene-environment interactions. Using an independent prospective birth cohort study of 190 infants, we predict height at 6 years of age. In a subset of 27 subjects, we adaptively train the model to account for growth between birth and 1 year of age using a Bayesian approach. The 5-year predicted heights compare well with actual data (measured height = 0.838*predicted height + 18.3; R(2) = 0.51) with an average error of 3.3%. In one patient, we also exemplify how our growth prediction model can be used for the early detection of growth deficiency and the evaluation of the effectiveness of growth hormone therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app