Clinical Trial, Phase III
Journal Article
Multicenter Study
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

The Distribution of Leakage on Fluorescein Angiography in Diabetic Macular Edema: A New Approach to Its Etiology.

Purpose: To determine the distribution of leakage on fluorescein angiography (FA) and explore the clinically protective role of astrocytes against damage to the inner blood retinal barrier (iBRB) in diabetic macular edema (DME).

Methods: A consecutive case series of 87 eyes of 87 patients with DME was included. We measured the leakage area in each field of the Early Treatment Diabetic Retinopathy Study (ETDRS) grid on late-phase FA images. The normative thickness of the nerve fiber layer (NFL), in which the astrocytes are confined, was derived from a previous work using spectral-domain optical coherence tomography. We explored the difference in leakage areas in every two fields. Moreover, we investigated the correlation between the mean of the leakage area and the mean of thickness of the NFL in each ETDRS field.

Results: The leakage areas in the nasal, inferior, superior, and temporal fields were 2.34 mm2, 2.84 mm2, 3.03 mm2, and 3.96 mm2. The difference in leakage area between each two fields was significant in all cases (P < 0.05) except between the inferior and superior fields (P = 0.65). The temporal field was the only field that showed leakage in all 87 cases. The correlation between the leakage area and the thickness of the NFL in the ETDRS fields was negative and highly significant: r = -0.96 (95% confidence interval -0.99 to -0.02).

Conclusion: The distribution of leakage correlates inversely and statistically significantly with the thickness of the NFL, suggesting astrocytes in the NFL play a pivotal role in preventing damage to the iBRB and subsequent evolution of microaneurysms in DME. Moreover, fluid extravasation due to damage to the iBRB is expressed earlier in the temporal than in the other three fields.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app