Add like
Add dislike
Add to saved papers

Modeling miRNA-mRNA interactions that cause phenotypic abnormality in breast cancer patients.

BACKGROUND: The dysregulation of microRNAs (miRNAs) alters expression level of pro-oncogenic or tumor suppressive mRNAs in breast cancer, and in the long run, causes multiple biological abnormalities. Identification of such interactions of miRNA-mRNA requires integrative analysis of miRNA-mRNA expression profile data. However, current approaches have limitations to consider the regulatory relationship between miRNAs and mRNAs and to implicate the relationship with phenotypic abnormality and cancer pathogenesis.

METHODOLOGY/FINDINGS: We modeled causal relationships between genomic expression and clinical data using a Bayesian Network (BN), with the goal of discovering miRNA-mRNA interactions that are associated with cancer pathogenesis. The Multiple Beam Search (MBS) algorithm learned interactions from data and discovered that hsa-miR-21, hsa-miR-10b, hsa-miR-448, and hsa-miR-96 interact with oncogenes, such as, CCND2, ESR1, MET, NOTCH1, TGFBR2 and TGFB1 that promote tumor metastasis, invasion, and cell proliferation. We also calculated Bayesian network posterior probability (BNPP) for the models discovered by the MBS algorithm to validate true models with high likelihood.

CONCLUSION/SIGNIFICANCE: The MBS algorithm successfully learned miRNA and mRNA expression profile data using a BN, and identified miRNA-mRNA interactions that probabilistically affect breast cancer pathogenesis. The MBS algorithm is a potentially useful tool for identifying interacting gene pairs implicated by the deregulation of expression.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app