Letter
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulation of Rab5 isoforms by transcriptional and post-transcriptional mechanisms in yeast.

FEBS Letters 2017 September
Rab5 GTPases are master regulators of early endosome biogenesis and transport. The genome of Saccharomyces cerevisiae encodes three Rab5 proteins: Vps21, the major isoform, Ypt52 and Ypt53. Here, we show that Vps21 is the most abundant Rab5 protein and Ypt53 is the least abundant. In stressed cells, Ypt53 levels increase but never exceed that of Vps21. Its induction requires the transcription factors Crz1 and Gis1. In growing cells, the expression of Ypt53 is suppressed by post-transcriptional mechanisms mediated by the untranslated regions of the YPT53 mRNA. Based on genetic experiments, these sequences appear to stimulate deadenylation, Pat1-activated decapping and Xrn1-mediated mRNA degradation. Once this regulation is bypassed, Ypt53 protein levels surpass Vps21, and Ypt53 is sufficient to maintain endosomal function and cell growth.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app