Add like
Add dislike
Add to saved papers

Relative association of Rubisco with manganese and magnesium as a regulatory mechanism in plants.

Physiologia Plantarum 2017 December
Rubisco, the enzyme that constitutes as much as half of the protein in a leaf, initiates either the photorespiratory pathway that supplies reductant for the assimilation of nitrate into amino acids or the C3 carbon fixation pathway that generates carbohydrates. The relative rates of these two pathways depend both on the relative extent to which O2 and CO2 occupies the active site of Rubisco and on whether manganese or magnesium is bound to the enzyme. This study quantified the activities of manganese and magnesium in isolated tobacco chloroplasts and the thermodynamics of binding of these metals to Rubisco purified from tobacco or a bacterium. In tobacco chloroplasts, manganese was less active than magnesium, but Rubisco purified from tobacco had a higher affinity for manganese. The activity of each metal in the chloroplast was similar in magnitude to the affinity of tobacco Rubisco for each. This indicates that, in tobacco chloroplasts, Rubisco associates almost equally with both metals and rapidly exchanges one metal for the other. Binding of magnesium was similar in Rubisco from tobacco and a bacterium, whereas binding of manganese differed greatly between the Rubisco from these species. Moreover, the ratio of leaf manganese to magnesium in C3 plants increased as atmospheric CO2 increased. These results suggest that Rubisco has evolved to improve the energy transfers between photorespiration and nitrate assimilation and that plants regulate manganese and magnesium activities in the chloroplast to mitigate detrimental changes in their nitrogen/carbon balance as atmospheric CO2 varies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app