Add like
Add dislike
Add to saved papers

Viscoelastic Properties of the Chinese Fir (Cunninghamia lanceolata) during Moisture Sorption Processes Determined by Harmonic Tests.

Materials 2016 December 18
Measured by harmonic tests, the viscoelastic properties of Chinese fir during moisture sorption processes were examined under three relative humidity (RH) modes: RHramp, RHisohume, and RHstep. The stiffness decreased and damping increased as a function of the moisture content (MC), which is presumed to be the effect of plasticization and an unstable state. The increasing damping was associated with the breaking of hydrogen bonds and the formation of free volume within polymer networks. The changes of loss modulus ratio at 1 and 20 Hz, E″1Hz/E″20Hz, proved the changing trend of the unstable state. Higher ramping rates aggravated the unstable state at the RHramp period, and higher constant RH levels provided more recovery of the unstable state at the RHisohume period. Changes of viscoelastic properties were associated with RH (varied or remained constant), and the application of Boltzmann's superposition principle is a good approach to simulate viscoelasticity development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app