Add like
Add dislike
Add to saved papers

Impaired myocardial relaxation with exercise determines peak aerobic exercise capacity in heart failure with preserved ejection fraction.

ESC Heart Failure 2017 August
BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome characterized by impaired exercise capacity due to shortness of breath and/or fatigue. Assessment of diastolic dysfunction at rest and with exercise may provide insight into the pathophysiology of exercise intolerance in HFpEF.

AIMS: To measure echocardio-Doppler-derived parameters of diastolic function as they relate to various indices of aerobic exercise capacity in HFpEF.

METHODS: We selected 16 subjects with clinically stable HFpEF, no evidence of volume overload, but impaired functional capacity by cardiopulmonary exercise testing [peak oxygen consumption (VO2 )]. We measured the transmitral E and A flow velocities, E/A ratio, and E deceleration time (DT) and tissue Doppler E' velocity. We also indexed the E' to the DT, as additional measure of impaired relaxation (E'DT ), and calculated the diastolic functional reserve index (DFRI), as the product of E' at rest and change in E' with exercise.

RESULTS: E' velocity, at rest and peak exercise, as well as the DFRI positively correlated with peak VO2 , whereas DT, E'DT , and E/E' with exercise inversely correlated with peak VO2 . Of note, the E'DT at rest also significantly predicted E' velocity at peak exercise (R = +0.81, P < 0.001). Exercise E' was the only independent predictor of peak VO2 at multivariable analysis (R = +0.67, P = 0.005).

CONCLUSIONS: The E' velocity at peak exercise is a strong and independent predictor of aerobic exercise capacity as measured by peak VO2 in patients with HFpEF, providing the link between abnormal myocardial relaxation with exercise and impaired aerobic exercise capacity in HFpEF.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app