Add like
Add dislike
Add to saved papers

Induction of the Histamine-Forming Enzyme Histidine Decarboxylase in Skeletal Muscles by Prolonged Muscular Work: Histological Demonstration and Mediation by Cytokines.

Recent studies suggest that histamine-a regulator of the microcirculation-may play important roles in exercise. We have shown that the histamine-forming enzyme histidine decarboxylase (HDC) is induced in skeletal muscles by prolonged muscular work (PMW). However, histological analysis of such HDC induction is lacking due to appropriate anti-HDC antibodies being unavailable. We also showed that the inflammatory cytokines interleukin (IL)-1 and tumor necrosis factor (TNF)-α can induce HDC, and that PMW increases both IL-1α and IL-1β in skeletal muscles. Here, we examined the effects (a) of PMW on the histological evidence of HDC induction and (b) of IL-1β and TNF-α on HDC activity in skeletal muscles. By immunostaining using a recently introduced commercial polyclonal anti-HDC antibody, we found that cells in the endomysium and around blood vessels, and also some muscle fibers themselves, became HDC-positive after PMW. After PMW, TNF-α, but not IL-1α or IL-1β, was detected in the blood serum. The minimum intravenous dose of IL-1β that would induce HDC activity was about 1/10 that of TNF-α, while in combination they synergistically augmented HDC activity. These results suggest that PMW induces HDC in skeletal muscles, including cells in the endomysium and around blood vessels, and also some muscle fibers themselves, and that IL-1β and TNF-α may cooperatively mediate this induction.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app