Add like
Add dislike
Add to saved papers

Engineering mammalian cells to seek senescence-associated secretory phenotypes.

Journal of Cell Science 2017 September 16
Since the removal of senescent cells in model organisms has been linked to rejuvenation and increased lifespan, senotherapies have emerged to target senescent cells for death. In particular, interleukin-6 (IL6) is a prominent senescence-associated secretory phenotype (SASP) and, thus, seeking IL6 could potentially localize engineered cells to senescent cells for therapeutic intervention. Here, we engineered a chimeric IL6 receptor (IL6Rchi) that generates a Ca2+ signal in response to IL6 stimulation. When IL6Rchi was co-expressed with an engineered Ca2+ -activated RhoA (CaRQ), it enabled directed migration to IL6 in cells that have no such natural ability. Next, the removal of target cells was accomplished by the mechanism of membrane fusion and subsequent death. This work represents a first step towards engineering a cell to target senescent cells that secrete high levels of IL6. For increased specificity to senescent cells, it will likely be necessary for an engineered cell to recognize multiple SASPs simultaneously.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app