Add like
Add dislike
Add to saved papers

Development and characterization dual responsive magnetic nanocomposites for targeted drug delivery systems.

A drug delivery system based on dual responsive units was developed. An appealing pH- and thermo-responsive triblock terpolymer as the drug carrier was synthesized by RAFT polymerization of N-isopropyl acrylamide and methacrylic acid monomers using PEG-RAFT agent. The Fe3 O4 magnetic nanoparticles were synthesized by co-precipitation of Fe salts. Synthesized samples were characterized by FT-IR, XRD, GPC, SEM and TEM. The dual responsive behaviour and self-assembly of the triblock terpolymers in aqueous solution were investigated using UV-vis transmittance and DLS. Based on the results of DLS and TEM, the average size of micelles was 170, 125 and 30 nm. The triblock terpolymer was used as a chemotherapy drug carrier and doxorubicin as a model drug. The release rate of the drug at two different temperatures (37 °C and 42 °C) and pHs (5.8 and 7.4) was studied. The in vitro cytotoxicity assay of free doxorubicin and drug-loaded magnetic nanoparticles was studied. The MTT assay exhibited that these polymers are biocompatible and no toxicity. As well, IC50 of the DOX-loaded triblock terpolymer in MTT test demonstrated that these systems could be suitable for the treatment of cancer.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app